import numpy as np
a = np.array([[1, 2, 3], [4, 5, 6]])
mean_along_rows = np.mean(a, axis=0)
print(mean_along_rows)
mean_along_columns = np.mean(a, axis=1)
print(mean_along_columns)

numpy.max() ;
numpy.min()
numpy.argmax() #沿軸max的index
numpy.argmin() #沿軸min的index
axis參數同numpy.mean()
推薦hahow線上學習python: https://igrape.net/30afN
import numpy as np
a = np.array([[1, 2, 3], [4, 5, 6]])
max_along_rows = np.max(a, axis=0)
print(“max_along_rows:”, max_along_rows)
max_along_columns = np.max(a, axis=1)
print(“max_along_columns:”, max_along_columns)
argmax_along_rows = np.argmax(a, axis=0)
print(“argmax_along_rows:”, argmax_along_rows)
argmax_along_columns = np.argmax(a, axis=1)
print(“argmax_along_columns:”, argmax_along_columns)

推薦hahow線上學習python: https://igrape.net/30afN



![Python: pandas.Series如何只保留str,去除重複值?#isinstance(x:Any, str) -> bool #.drop_duplicates() #Series.apply( function )逐元素應用function運算 #DataFrame.apply( function )逐Series應用function運算 .drop_duplicates() 跟.unique()有何差別? df.drop_duplicates() 等效於 df[~df.duplicated()] Python: pandas.Series如何只保留str,去除重複值?#isinstance(x:Any, str) -> bool #.drop_duplicates() #Series.apply( function )逐元素應用function運算 #DataFrame.apply( function )逐Series應用function運算 .drop_duplicates() 跟.unique()有何差別? df.drop_duplicates() 等效於 df[~df.duplicated()]](https://i1.wp.com/savingking.com.tw/wp-content/uploads/2024/11/20241123194900_0_5218de.png?quality=90&zoom=2&ssl=1&resize=350%2C233)




![Python Logging 完全指南:從基礎到實戰應用; import logging ; logging.basicConfig(level=logging.INFO, handlers=[ logging.StreamHandler(), logging.FileHandler(‘app.log’, mode=’a’, encoding=’utf-8′)] ) ; inspect.currentframe().f_code.co_name #動態取得funcName Python Logging 完全指南:從基礎到實戰應用; import logging ; logging.basicConfig(level=logging.INFO, handlers=[ logging.StreamHandler(), logging.FileHandler(‘app.log’, mode=’a’, encoding=’utf-8′)] ) ; inspect.currentframe().f_code.co_name #動態取得funcName](https://i1.wp.com/savingking.com.tw/wp-content/uploads/2025/10/20251021155823_0_c16012.png?quality=90&zoom=2&ssl=1&resize=350%2C233)

近期留言