from scipy.interpolate import interp1d
import numpy as np
# 定義已知的 X 和 Y 值
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])
# 建立一個插值函數
f = interp1d(x, y)
# 定義需要插值的 X 值
x_new = np.array([1.5, 2.5])
# 對 X 值進行插值
y_new = f(x_new)
print(“插值結果:”, y_new)

用polyfit作外插
import numpy as np
# 定义已知的 X 和 Y 值
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])
# 使用 polyfit 函数拟合多项式
coefs = np.polyfit(x, y, 2)
# 使用 numpy.poly1d 函数创建多项式对象
p = np.poly1d(coefs)
# 定义需要外插的 X 值
x_new = np.array([0, 4])
# 使用多项式对象的差值函数对 X 值进行外插
y_new = p(x_new)
print(“外插结果:”, y_new)

推薦hahow線上學習python: https://igrape.net/30afN








![Python: pandas.DataFrame (df) 的取值: df [單一字串] 或df [list_of_strings] 選取一個或多個columns; df [切片] 或 df [bool_Series] 選取多個rows #bool_Series長度同rows, index也需要同df.index ,可以使用.equals() 確認: df.index.equals(mask.index) Python: pandas.DataFrame (df) 的取值: df [單一字串] 或df [list_of_strings] 選取一個或多個columns; df [切片] 或 df [bool_Series] 選取多個rows #bool_Series長度同rows, index也需要同df.index ,可以使用.equals() 確認: df.index.equals(mask.index)](https://i0.wp.com/savingking.com.tw/wp-content/uploads/2025/04/20250420212553_0_6fb2c3.png?quality=90&zoom=2&ssl=1&resize=350%2C233)

近期留言