Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression()

加入好友
加入社群
Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression() - 儲蓄保險王

from sklearn import linear_model

regr = linear_model.LinearRegression(*,)

#產生regr操作子,可命名為lmLR

*右方的參數,

表示要連名帶姓寫出參數名稱

依順序寫不行

Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression() - 儲蓄保險王

 

regr.fit(x,y)

#直接對操作子regr產生影響

Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression() - 儲蓄保險王

 

regr.coef_ #係數

regr.intercept_ #截距

Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression() - 儲蓄保險王

 

pred = regr.predict([[40],[5],[15]]) #注意shape

Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression() - 儲蓄保險王

regression: 
Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression() - 儲蓄保險王
 
from sklearn import linear_model
if __name__ == “__main__”:
    x = [ [29],[28],[34],[31],[25],[29],[32],[31],[24],[33],[25],[31],[26],[30] ]
    y = [77,62,93,84,59,64,80,75,58,91,51,73,65,84]
    regr = linear_model.LinearRegression()
    regr.fit(x,y)
    pred = regr.predict([[40],[5],[15]])
Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression() - 儲蓄保險王
 
加碼題:
Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression() - 儲蓄保險王
from sklearn import linear_model
import numpy as np
if __name__ == “__main__”:
    x = [ [29],[28],[34],[31],[25],[29],[32],
         [31],[24],[33],[25],[31],[26],[30] ]
    y = [77,62,93,84,59,64,80,75,58,91,51,73,65,84]
    regr = linear_model.LinearRegression()
    regr.fit(x,y)
    pred = regr.predict([[40],[5],[15]])
   
    x_line=[]
    for ele in x: x_line.append(ele[0])
    x_ary = np.array(x_line)
    y_ary = x_ary*regr.coef_[0]+regr.intercept_
   
    import matplotlib.pyplot as plt
    fig,ax = plt.subplots()
    ax.plot(x_ary,y_ary,label=”regressions”,color=”r”)
    ax.scatter(x_ary,y,label=”samples”,color=”b”)
    ax.legend(loc=”best”)
    fig.show()
  Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression() - 儲蓄保險王
參考解答:
Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression() - 儲蓄保險王
 
Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression() - 儲蓄保險王
from typing import List,Union
import numpy as np
def myPred(coeff:Union[List[float],np.ndarray],intercept:float,
           xtest:Union[list,np.ndarray])-> np.ndarray[float]:
    “””輸入coeff (1D List[float]),代表各自變數的係數
    #[3.74] #長度=xtest的欄數(.shape[1]),目前是1
    intercept:截距 float #-36.36
    xtest: 2D list 或ndarray,代表每維度的觀察值
    return 預測值 y_prediction,np.ndarray[float]    “””
    xtestAry = np.array(xtest)  
    coeffAry = np.array(coeff)  
    y_prediction= coeffAry*xtestAry + intercept
    return y_prediction

if __name__==”__main__”:
    xtest =[[40],
            [5],
            [15]]
    intercept = -36.36
    coeff = [3.74]
    y_prediction = myPred(coeff,intercept,xtest)
    print(“y_prediction:\n”,y_prediction)
#y_prediction 不該是2D
#應該是因為xtest的第二維長度只有1
#幸運跑出來而已,還要繼續處理的
#coeff[0]*xtest的第0欄+coeff[1]*xtest的第1欄+…
#需要取直欄,pandas可能比較好用
#或使用array的切片方式  
Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression() - 儲蓄保險王
 
參考解答:
Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression() - 儲蓄保險王
Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression() - 儲蓄保險王
小修正:
 
from typing import List,Union
import numpy as np
def myPred(coeff:Union[List[float],np.ndarray],intercept:float,
           xtest:Union[list,np.ndarray])-> np.ndarray[float]:
    “””輸入coeff (1D List[float]),代表各自變數的係數
    #[3.74] #長度=xtest的欄數(.shape[1]),目前是1
    intercept:截距 float #-36.36
    xtest: 2D list 或ndarray,代表每維度的觀察值
    return 預測值 y_prediction,np.ndarray[float]    “””
    xtestAry = np.array(xtest)  
    coeffAry = np.array(coeff)  
    if len(coeff) != xtestAry.shape[1]:return [None]
    for i in range(len(coeffAry)):
        y_prediction= coeffAry[i]*xtestAry[:,i] #+intercept?
    y_prediction += intercept 
#+intercept放迴圈內可能會重複加
#本例迴圈僅有一次,所以看不出差別 
    return y_prediction
if __name__==”__main__”:
    xtest =[[40],
            [5],
            [15]]
    intercept = -36.36
    coeff = [3.74]
    y_prediction = myPred(coeff,intercept,xtest)
    print(“y_prediction:\n”,y_prediction)
  Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression() - 儲蓄保險王
 

加入好友
加入社群
Python 線性迴歸: 氣溫跟冰飲銷售量有關係嗎? LinearRegression ; from sklearn import linear_model ; regr = linear_model. LinearRegression() - 儲蓄保險王

儲蓄保險王

儲蓄險是板主最喜愛的儲蓄工具,最喜愛的投資理財工具則是ETF,最喜愛的省錢工具則是信用卡

You may also like...

發佈留言

發佈留言必須填寫的電子郵件地址不會公開。 必填欄位標示為 *