dropna(axis=0, how=’any’, thresh=None, subset=None, inplace=False)
axis{0 or ‘index’, 1 or ‘columns’}, default 0
-
0, or ‘index’ : Drop rows which contain missing values.
-
1, or ‘columns’ : Drop columns which contain missing value.
how{‘any’, ‘all’}, default ‘any’
-
‘any’ : If any NA values are present, drop that row or column.
- ‘any’: 只要有一個NA,就整列(欄)刪除
-
‘all’ : If all values are NA, drop that row or column.
- ‘all’: 全部都NA,才刪除該列(欄)
thresh : int, optional
Require that many non-NA values. Cannot be combined with how.
(threshold 門檻)
非空元素最低数量。int型,默认为None。
如果该行/列中,非空元素数量小于这个值,就删除该行/列。
subset column label or sequence of labels, optional
Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include.
inplace bool, default False
Whether to modify the DataFrame rather than creating a new one.
inplace:是否原地替换。布尔值,默认为False
直接將csv檔讀進來DataFrame:

原DataFrame有
[13 rows x 7 columns]
其中2 rows , 1 column 為空(NaN)
程式碼:
import pandas as pd
fpath = r”C:\antenna_AMS\21046\emt2csv\01\01test.csv”
df = pd.read_csv(fpath)
#df = pd.read_csv(fpath,header=None) ;
# 讀取無欄標籤的檔案,自動加0,1,2…當欄標籤
df_drop0 = df.dropna(axis=0, how=’all’)
#先drop空列,axis=0
df_drop1 = df_drop0.dropna(axis=1,how=’all’)
#再drop空欄,axis=1

df_drop0 = df.dropna(axis=0, how=’all’)
[11 rows x 7 columns]
刪除了兩空列
df_drop1 = df_drop0.dropna(axis=1,how=’all’)
對df_drop0再drop空欄(axis=1)

[11 rows x 6 columns]
刪除了一個空欄
刪除空列會導致index不連續
推薦hahow線上學習python: https://igrape.net/30afN
![Python 進階實戰:深入 Word 核心,挖出那一坨 BLOB (含自省 Debug 技巧, BLOB= Binary Large Object) ; part = doc.part.rels[rid].target_part ; return part.blob if “ImagePart” in type(part).__name__ else None Python 進階實戰:深入 Word 核心,挖出那一坨 BLOB (含自省 Debug 技巧, BLOB= Binary Large Object) ; part = doc.part.rels[rid].target_part ; return part.blob if “ImagePart” in type(part).__name__ else None](https://i1.wp.com/savingking.com.tw/wp-content/uploads/2026/01/20260126111046_0_cd8751.png?quality=90&zoom=2&ssl=1&resize=350%2C233)
![Python: 資料格式如 List[dict],如何快速將SN加入每一個dict中,以利Excel輸出?如何解包dict? **dict ; 將List[dict]的資料轉為pandas.DataFrame 長什麼樣子? Python: 資料格式如 List[dict],如何快速將SN加入每一個dict中,以利Excel輸出?如何解包dict? **dict ; 將List[dict]的資料轉為pandas.DataFrame 長什麼樣子?](https://i0.wp.com/savingking.com.tw/wp-content/uploads/2024/02/20240208093926_0.png?quality=90&zoom=2&ssl=1&resize=350%2C233)


![Python爬蟲:BeautifulSoup的 .find_all() 與 .find() 與 .select(‘標籤名[屬性名1=”屬性值1″][屬性名2=”屬性值2″]’) ; from bs4 import BeautifulSoup ; Live Server(可以預覽HTML的VS Code套件) Python爬蟲:BeautifulSoup的 .find_all() 與 .find() 與 .select(‘標籤名[屬性名1=”屬性值1″][屬性名2=”屬性值2″]’) ; from bs4 import BeautifulSoup ; Live Server(可以預覽HTML的VS Code套件)](https://i1.wp.com/savingking.com.tw/wp-content/uploads/2025/03/20250330190318_0_925655.jpg?quality=90&zoom=2&ssl=1&resize=350%2C233)



]*>.*?底下插入一個圖檔.*?</w:p>’, flags = re.DOTALL) ; new_xml, n = pattern.subn(”, xml, count=1)' title='Python正則替換:全面掌握 re.sub 與 re.subn 的差異與實戰 #substitute(替換); . 預設匹配「除\n以外的任意單一字元」; pattern = re.compile(r'<w:p[^>]*>.*?底下插入一個圖檔.*?</w:p>’, flags = re.DOTALL) ; new_xml, n = pattern.subn(”, xml, count=1)' loading='lazy' width=350 height=233 />
近期留言